Synthesis of 6,7,9,10-tetrahydro-4H-thieno[3,2-f][1,4]oxathionine and 4,7,8,10-tetrahydro-5H-thieno[2,3-f][1,4]oxathionine by S-ylide rearrangement

Tomoko Kitano and Yoshiro Sato *
Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

6,7,9,10-Tetrahydro-4 H-thieno[3,2- f][1,4] oxathionine 7 and 4,7,8,10-tetrahydro- $5 H$-thieno[2,3-f][1,4]oxathionine 17 have been synthesized by a $[2,3]$ sigmatropic rearrangement of S-methylides 6 and 16 which are generated by the fluoride ion-induced desilylation of 3-(2-thienyl)-4-[(trimethylsilyl)methyl]-1,4oxathianium triflate 4 and the 3-(3-thienyl)- analogue 14.

Although the bioactivities of eight- to ten-membered heterocyclic compounds are interesting with regard to the development of new medicines, studies in this field are limited because convenient synthetic routes have not been fully investigated. ${ }^{1}$ Sommelet-Hauser rearrangement of five- to seven-membered cyclic ammonium N-ylides and cyclic sulfonium S-ylides are useful for three-carbon-ring enlargement. ${ }^{2}$ We previously reported that the fluoride ion-induced desilylation of [(trimethylsilyl)methyl]onium salts is suitable for the syntheses of eight- to ten-membered cyclic amines and sulfides. ${ }^{3,4}$ We report here the synthesis of new nine-membered heterocyclic compounds, $6,7,9,10$-tetrahydro- 4 H -thieno[3,2-f][1,4]oxathionine 7 and $4,7,8,10$-tetrahydro- $5 H$-thieno[2,3-f][1,4]oxathionine 17, by S-ylide rearrangement.

Results and discussion

The starting sulfides, 3 -(2-thienyl)-1,4-oxathiane $\mathbf{3}$ and the 3 thienyl analogue $\mathbf{1 3}$ were prepared from 2-thienylmagnesium bromide $\mathbf{1}$ or lithium di(3-thienyl)cuprate $\mathbf{1 2}$ with 3 -chloro-1,4oxathiane 2 (Schemes 1 and 3). They were then treated with (trimethylsilyl)methyl triflate to give mixtures of cis- and trans-3-(2-thienyl)-4-[(trimethylsilyl)methyl]-1,4-oxathianium triflate cis-4, trans-4 (cis:trans $=37: 63$) and 3-(3-thienyl)- analogues cis-14, trans-14 (cis:trans $=14: 86$). Although we initially tried to isolate each stereoisomer, isolation was difficult because a mixture of cis-4 and trans-4 did not crystallize, and a mixture of cis-14 and trans- $\mathbf{1 4}$ decomposed in the solvents at room temp. The configurations of both of the major isomers were estimated to be trans by comparison of the chemical shifts of protons of the $\mathrm{CH}_{2} \mathrm{Si}$ groups (cis > trans) and at position 3 (cis < trans) in the ${ }^{1} \mathrm{H}$ NMR spectra of the mixtures, according to determination of the stereochemistry of cis- and trans-3-phenyl-4-[(trimethylsilyl)methyl]-1,4-oxathianium perchlorate. ${ }^{4 b}$

Reaction of a mixture of salts cis-4 and trans-4 (37:63) with caesium fluoride in 1,2-dimethoxyethane (DME) gave (E)- and (Z)-3a,4,6,7-tetrahydro-9 H-thieno-[3,2-f][1,4]oxathionine (E) 5, (Z)-5 and 3-[(2-hydroxyethyl)sulfanylmethyl]-2-vinylthiophene $\mathbf{8}$ after 1 h at room temp. (Table 1, entry 1), and no significant difference was observed after 24 h (entry 2). When the reaction was carried out in the presence of 1,8 -diaza-bicyclo[5.4.0]undec-7-ene (DBU), ${ }^{5}$ the products changed to 6,7,9,10-tetrahydro- 4 H -thieno[3,2-f][1,4]oxathionine 7 (entry 3). The configuration of compound $(Z)-5$ was confirmed by observation of nuclear Overhauser effect (NOE) enhancement (7.7%) of the proton at position 10 upon irradiation of a proton at position 4.
Thus, $(E)-5$ and $(Z)-5$, which are $[2,3]$ sigmatropic rearrange-
ment products of ylide 6, are stable at room temp. and can be aromatized by the aid of a strong base. When these compounds were kept for 4 days at room temp. in air, $(E)-5$ changed to a mixture of products 7, 8 and 10-hydroxy-6,7,9,10-tetra-hydro- $4 H$-thieno $[3,2-f][1,4]$ oxathionine 11 in the proportions 18:68:14, and (Z) -5 changed to a mixture of the same products in the proportion $91: 3: 6$. Thus, alcohol $\mathbf{8}$ is formed mainly from isomer (E)-5 by an intramolecular [1,5] proton transfer from position 3a to position 8 .

The conformation of the starting onium salts is retained in the product ylides in the desilylation. ${ }^{3 i}$ Ylide cis- 6 may exist in either an axial-equatorial or equatorial-axial form (Scheme 2). One of these is converted into isomer $(E)-5$ and the other is converted into isomer (Z)-5. Ylide trans- $\mathbf{6}$ exists as an equatorial-equatorial conformation and is isomerized to isomer $(Z)-5$. The ratio of $(E)-5$ to $(Z)-5$ products $(15: 67)$ is consistent with the ratio of salts cis-4 to trans-4 (37:63).
Although many [2,3] sigmatropic rearrangement products ('isotoluene' compounds) have been isolated in N-ylide reactions, ${ }^{3}$ sigmatropic rearrangement products from 1-phenyl-3,4-dihydro-1 H -2-benzothiopyranium 2-methylides ${ }^{4 a}$ and 3-phenyl-1,4-oxathianium 4 -ylides, ${ }^{4 b}$ could not be isolated because of their instability in aqueous media. However, compounds $(E)-5$ and $(Z)-5$ are stable in aqueous media.

In our previous works concerning desilylation, ${ }^{3-5}$ we commonly used dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) as the solvent. The use of DMF in this reaction, however, resulted in the competitive formation of a new product 2 -\{1-hydroxy-2-[2-(methylsulfanyl)ethoxy]ethyl\} thiophene 9, and the yields of compounds $(E)-5,(Z)-5$ and $\mathbf{8}$ were decreased (entries 4 and 5). The products of the reaction in DMSO were further complicated by the formation of 2-\{2-[2-(methylsulfanyl)ethoxy]acetyl $\}$ thiophene 10 and $\mathbf{3}$ (entries 7-9).

Compounds 9 and 10 should be formed via bicycles $(E)-5$ or $(Z)-5$, because the main product was compound 7 when the reactions were carried out in the presence of DBU (entries 6 and 10). Oxygen atoms of the hydroxy group of the alcohol 9 and the carbonyl group of ketone $\mathbf{1 0}$ would be transferred from the solvent molecules, although the mechanism is still unclear. Compound $\mathbf{3}$ may be formed from bicycle $\mathbf{5}$ by the elimination of carbene.
The reaction of salts cis-14 and trans- $\mathbf{1 4}$ (ratio 14:86) with caesium fluoride gave a mixture of many products in DME, DMF or DMSO, contrary to the case of salts cis- $\mathbf{4}$ and trans-4 (Scheme 3). While 4-hydroxy-4,7,8,10-tetrahydro$5 H$-thieno $[2,3-f][1,4]$ oxathionine $18(37 \%)$ was isolated from the reaction mixture in DMSO, and compound 18 (19\%) and 2-[(2-hydroxyethyl)sulfanylmethyl]-3-vinylthiophene 19 (8\%)

1

3

cis-4, trans-4

(E)-5

$+$

8
7

10

11

Scheme 1 Reagents and conditions: $\mathrm{i}, \mathrm{Et}_{2} \mathrm{O}$, benzene, RT, 24 h ; ii, $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{OTf}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 3 \mathrm{~h}$; iii, CsF, DME, DMF or DMSO, RT, 24 h
were isolated from the reaction in the presence of DBU , the expected 4,7,8,10-tetrahydro-5H-thieno[2,3- f][1,4]oxathionine 17 was not obtained. Although 7,8,10,10a-tetrahydro-5 H -thieno[2,3- f][1,4]oxathionine 15 is initially formed, via the ylide 16, it is quickly converted into the alcohols 18 and 19. The

Scheme 2

13
14

16

Scheme 3 Reagents and conditions: i, 2, THF, hexane, benzene, $-45^{\circ} \mathrm{C}$ to RT, 12 h ; ii, $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{OTf}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 2 \mathrm{~h}$; iii, CsF , (DBU), DMSO, RT, 24 h
addition of DBU shortly after the addition of caesium fluoride, contrary to the normal order, gave compound 17 in 46% yield. Reaction of the salt $\mathbf{1 4}$ with DBU may be preferable to that with caesium fluoride in this case.

Experimental

All reactions were carried out in N_{2}. Diethyl ether was distilled from sodium benzophenone ketyl. Benzene was distilled from sodium. Tetrahydrofuran (THF) was distilled from LiAlH_{4}. DMSO and DBU were dried by distillation under reduced pressure from CaH_{2}. DMF was dried by distillation under reduced pressure from BaO . DME was dried by distillation from CaH_{2}. CsF was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ at $180^{\circ} \mathrm{C}$. Distillation was performed on a Büchi Kugelrohr distillation apparatus. NMR spectra were recorded on a JEOL JNM-EX270, JNM-LA400 or JNM-A500 spectrometer. IR spectra were recorded on a Jasco FT/IR-5300 spectrometer. Mass spectra were measured on a JEOL JMS-SX102A system. All mps (Yanaco micro melting point apparatus) and bps (oven temperature) are uncorrected. J-Values are given in Hz .

3-(2-Thienyl)-1,4-oxathiane 3

3-Chloro-1,4-oxathiane 2 was prepared from 1,4-oxathiane ($3.1 \mathrm{~g}, 30 \mathrm{mmol}$) and N-chlorosuccinimide $(4.0 \mathrm{~g}, 30 \mathrm{mmol})$ in

Table 1 Reaction of cis- and trans-3-(2-thienyl)-4-[(trimethylsilyl)methyl]-1,4-oxathianium triflate cis-4, trans-4 with CsF at room temp.

Entry	Solvent	Additive	Reaction time (t / h)	Total yield (\%)	Product proportions ${ }^{a}$						
					(E)-5	(Z)-5	7	8	9	10	3
1	DME		1	78	8	72	0	20	0	0	0
2	DME		24	93	15	67	0	18	0	0	0
3	DME	DBU	24	92	0	0	100	0	0	0	0
4	DMF		1	71	7	43	0	0	50	0	0
5	DMF		24	95	9	51	0	0	40	0	0
6	DMF	DBU	24	88	0	0	95	5	0	0	0
7	DMSO		2	96	19	72	b	0	6	3	b
8	DMSO		24	91	13	44	b	0	12	31	b
9	DMSO		48	93	0	0	23	0	34	28	15
10	DMSO	DBU	24	90	0	0	85	9	0	0	6

${ }^{a}$ Proportions of the products were determined by integration of the ${ }^{1} \mathrm{H}$ NMR signals at $500 \mathrm{MHz} .{ }^{b}$ The proportions were not determined due to overlapping of the signal with others.
benzene ($50 \mathrm{~cm}^{3}$) according to the reported method. ${ }^{6}$ The benzene solution of chloride 2 was added to a solution of 2-thienylmagnesium bromide 1, prepared from 2-bromothiophene ($4.9 \mathrm{~g}, 30 \mathrm{mmol}$) and magnesium turnings $(0.73 \mathrm{~g}, 30$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 24 h at room temp. (RT) and quenched with 20% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(50 \mathrm{~cm}^{3}\right)$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed successively with 10% aq. NaOH and water, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on a silica gel column (hexane- $\mathrm{Et}_{2} \mathrm{O}, 20: 1$), and the eluent was distilled to give the title compound $\mathbf{3}(2.8 \mathrm{~g}, 49 \%)$, as a non-distillable oil [decomposed at $108{ }^{\circ} \mathrm{C}(1.2 \mathrm{mmHg})$] (Found: $\mathrm{C}, 51.4 ; \mathrm{H}, 5.4 . \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{OS}_{2}$ requires C, $51.6 ; \mathrm{H}, 5.4 \%$); $v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 1450,1285$ and $1105 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.57$ (1 H , ddd, $J 2.6,3.3$ and $13.5,5-\mathrm{H}), 2.98(1 \mathrm{H}$, ddd, $J 3.3,10.3$ and $13.5,5-\mathrm{H}), 3.77(1 \mathrm{H}$, ddd, $J 2.6,10.3$ and $11.7,6-\mathrm{H}), 3.81(1 \mathrm{H}$, dd, $J 9.2$ and $11.4,2-\mathrm{H}), 4.13(1 \mathrm{H}$, ddd, $J 3.3,3.3$ and $11.7,6-$ H), $4.22(1 \mathrm{H}$, dd, $J 3.3$ and $11.4,2-\mathrm{H}), 4.31(1 \mathrm{H}$, dd, $J 3.3$ and $9.2,3-\mathrm{H}), 6.94(1 \mathrm{H}, \mathrm{dd}, J 3.7$ and 5.1 , ArH$), 7.01(1 \mathrm{H}, \mathrm{dd}, J 1.1$ and 3.7, ArH) and $7.21(1 \mathrm{H}, \mathrm{dd}, J 1.1$ and 5.1, ArH$) ; \delta_{\mathrm{C}}(100.5$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $27.9,39.1,68.1,74.6,124.8,125.6,126.7$ and 141.4; $m / z\left(\right.$ EI) $186.0170\left(\mathrm{M}^{+} . \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{OS}_{2}\right.$ requires $\left.M, 186.0173\right)$, 186 (36\%), 128 (100), 126 (82) and 97 (30).

Since compound $\mathbf{3}$ is unstable at RT, it was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(60 \mathrm{~cm}^{3}\right)\left(0.5 \mathrm{~m}\right.$ solution) and stored at $-10^{\circ} \mathrm{C}$ over $4 \AA$ molecular sieves under N_{2}.

cis- and trans-3-(2-Thienyl)-4-[(trimethylsilyl)methyl]-1,4-oxathianium triflate cis-4, trans-4

To an aliquot of a 0.5 m solution of compound $3\left(2 \mathrm{~cm}^{3}, 1\right.$ mmol) was added (trimethylsilyl)methyl triflate ($260 \mathrm{mg}, 1.1$ mmol), and the mixture was stirred at RT for 3 h and concentrated under reduced pressure to give a mixture of the title salts cis-4 and trans-4 (37:63, the mixture was subsequently used for the following reaction with CsF) as an oil; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; CDCl_{3}) cis-4: $0.17(9 \mathrm{H}, \mathrm{s}), 1.59\left(1 \mathrm{H}, \mathrm{d}, J 13.9, \mathrm{CH}_{2}\right), 2.33(1 \mathrm{H}$, d, $J 13.9, \mathrm{CH}_{2}$), $3.53-3.60(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.23-4.30(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 5.45-5.50(1 \mathrm{H}$, br s, $3-\mathrm{H}), 7.13(1 \mathrm{H}, \mathrm{dd}, J 3.7$ and 5.1 , ArH) and $7.52(1 \mathrm{H}$, dd, $J 1.1$ and 5.1, ArH); trans-4: $0.14(9 \mathrm{H}$, s, SiCH_{3}), $2.35\left(1 \mathrm{H}, \mathrm{d}, J 13.9, \mathrm{CH}_{2}\right), 3.14\left(1 \mathrm{H}, \mathrm{d}, J 13.9, \mathrm{CH}_{2}\right)$, $3.60-3.78\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 5.29(1 \mathrm{H}, \mathrm{dd}, J 3.3$ and $9.9,3-\mathrm{H}), 7.70$ $(1 \mathrm{H}, \mathrm{dd}, J 3.7$ and $5.1, \mathrm{ArH})$ and $7.42(1 \mathrm{H}, \mathrm{dd}, J 1.1$ and 3.7 , ArH); other signals overlapped 3.05-3.13 (1 H), 4.00-4.16 (1 H, $2 \mathrm{H}), 4.32-4.49(2 \mathrm{H}, 2 \mathrm{H})$ and $7.43-7.48(1 \mathrm{H}, 1 \mathrm{H})$.

Reaction of salts 4 with CsF in DME

To a solution of salts cis-4 and trans-4 (37:63) in DME ($5 \mathrm{~cm}^{3}$) was added CsF ($0.30 \mathrm{~g}, 2 \mathrm{mmol}$). The mixture was stirred at RT and poured into water $\left(50 \mathrm{~cm}^{3}\right)$ after either 1 h or 24 h . The ethereal extract was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to give a mixture ($1 \mathrm{~h}: 156$
$\mathrm{mg} ; 24 \mathrm{~h}: 189 \mathrm{mg}$) of (E)- and (Z)-3a,4,6,7-tetrahydro-9H-thieno[3,2-f][1,4]oxathionines $(E)-5,(Z)-5$ and 3-[(2-hydroxy-ethyl)sulfanylmethyl]-2-vinylthiophene 8 . The products were isolated on a silica gel column ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 10:90 to $50: 50$) and their proportions were determined from the integrated values of the proton signals in the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture. The results are shown in Table 1.

Compound $(E)-5$: an oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2900,1640$ and $1130 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.56(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and 14.5 , $4-\mathrm{H}), 2.69(1 \mathrm{H}$, ddd, $J 4.0,10.6$ and $14.5,6-\mathrm{H}), 2.77-2.90(2 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{and} 6-\mathrm{H}), 3.54(1 \mathrm{H}$, ddd, $J 2.6,10.6$ and $12.5,7-\mathrm{H}), 4.11$ $(1 \mathrm{H}$, ddd, $J 3.6,4.0$ and $12.5,7-\mathrm{H}), 4.30-4.40(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{and}$ $3 \mathrm{a}-\mathrm{H}), 4.85(1 \mathrm{H}, \mathrm{dd}, J 6.6$ and $14.2,9-\mathrm{H}), 5.58(1 \mathrm{H}$, ddd, $J 1.3$, 3.0 and $6.3,3-\mathrm{H}), 5.66-5.73(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H})$ and $6.44(1 \mathrm{H}, \mathrm{dd}$, $J 1.3$ and $6.3,2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 34.4,37.7,51.4,70.6$, 72.2, 120.1, 123.8, 126.0 and 144.2.

Compound (Z)-5: an oil (Found: C, 53.8; H, 6.0. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{OS}_{2}$ requires $\mathrm{C}, 54.0 ; \mathrm{H}, 6.0 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2910,1640$ and 1055 ; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.60-2.73(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 6-\mathrm{H})$, $2.89(1 \mathrm{H}$, ddd, $J .6,7.3$ and $16.5,6-\mathrm{H}), 3.00(1 \mathrm{H}, \mathrm{dd}, J 5.0$ and $14.0,4-\mathrm{H}), 3.65(1 \mathrm{H}$, ddd, $J 2.6,5.9$ and 13.9, 7-H), 3.84-3.95 $(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{and} 3 \mathrm{a}-\mathrm{H}), 4.00(1 \mathrm{H}, \mathrm{dd}, J 10.6$ and $11.5,9-\mathrm{H}), 4.29$ $(1 \mathrm{H}, \mathrm{ddd}, J 1.0,4.6$ and $11.5,9-\mathrm{H}), 5.69(1 \mathrm{H}, \mathrm{dd}, J 3.3$ and 6.3 , $3-\mathrm{H}), 5.92(1 \mathrm{H}$, dddd, $J 1.3,2.0,4.6$ and $10.6,10-\mathrm{H}$) and 6.36 $(1 \mathrm{H}$, ddd, $J 0.9,1.3$ and $6.3,2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(67.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 40.3$, 42.9, 55.1, 69.9, 71.2, 117.3, 124.9, 125.2 and 148.00 . NOE enhancement was observed: 7.7% at $\delta 5.92(10-\mathrm{H}), 12.5 \%$ at $\delta 3.85(3 \mathrm{a}-\mathrm{H})$ and 11.2% at $\delta 2.65(4-$ and $6-\mathrm{H})$ under irradiation at $\delta 3.00(4-\mathrm{H})$.
Compound 8: an oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3410,1620$ and 900 ; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.10-2.30(1 \mathrm{H}, \mathrm{br}$ s, OH$), 2.55$ $\left(2 \mathrm{H}, \mathrm{t}, J 5.9, \mathrm{SCH}_{2}\right), 3.59\left(2 \mathrm{H}, \mathrm{t}, J 5.9, \mathrm{OCH}_{2}\right), 3.67(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArCH} H_{2}\right), 5.07\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.50(1 \mathrm{H}, \mathrm{d}, J 17.2$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.79\left(1 \mathrm{H}, \mathrm{dd}, J 10.9\right.$ and $\left.17.2, \mathrm{C} H=\mathrm{CH}_{2}\right), 6.88(1 \mathrm{H}$, d, $J 5.3, \mathrm{ArH}$) and $7.03(1 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{ArH}) ; \delta_{\mathrm{C}}(125.4 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 28.1,34.6,60.5,114.5,123.7,127.4,129.6,135.2$ and 138.8; m/z (EI) $200.0311\left(\mathrm{M}^{+} . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{OS}_{2}\right.$ requires M, 200.0329), $200(40 \%), 123$ (100) and 79 (22).

Reaction of salts 4 with CsF in the presence of DBU in DME

To a solution of salts cis-4 and trans-4 (37:63) in DME ($5 \mathrm{~cm}^{3}$) were added DBU ($0.30 \mathrm{~g}, 2 \mathrm{mmol}$) and CsF $(0.30 \mathrm{~g}, 2 \mathrm{mmol})$. The mixture was stirred for 24 h and worked up in a manner similar to that described above. The ethereal extract was concentrated to give 6,7,9,10-tetrahydro-4H-thieno[3,2-f][1,4]oxathionine $7(185 \mathrm{mg}, 92 \%)$, bp $120^{\circ} \mathrm{C}(1.5 \mathrm{mmHg})$ (Found: C, 53.7; H, 6.0. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{OS}_{2}$ requires C, $54.0 ; \mathrm{H}, 6.0 \%$); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 1465,1115$ and $705 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.06$ $\left(2 \mathrm{H}, \mathrm{t}, J 4.8,6-\mathrm{H}_{2}\right), 2.88\left(2 \mathrm{H}, \mathrm{t}, J 4.5,10-\mathrm{H}_{2}\right), 3.65(2 \mathrm{H}, \mathrm{t}$, $\left.J 4.5,9-\mathrm{H}_{2}\right), 3.82\left(2 \mathrm{H}, \mathrm{t}, J 4.8,7-\mathrm{H}_{2}\right), 4.00\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}_{2}\right), 6.98$ $(1 \mathrm{H}, \mathrm{d}, J 5.1, \mathrm{ArH})$ and $7.09(1 \mathrm{H}, \mathrm{d}, J 5.1, \mathrm{ArH}) ; \delta_{\mathrm{C}}(100.5$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 26.9,29.8,29.9,72.8,75.4,122.3,129.7$,
133.9 and 139.1; m/z (EI) $200.0323\left(\mathrm{M}^{+} . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{OS}_{2}\right.$ requires M, 200.0329), 200 (100%), 123 (30) and 110 (69).

Reaction of salts $\mathbf{4}$ with CsF in DMF

To a solution of salts cis-4 and trans-4 (37:63) in DMF ($5 \mathrm{~cm}^{3}$) was added CsF ($0.30 \mathrm{~g}, 2 \mathrm{mmol}$). The mixture was stirred for either 1 h or 24 h and worked up in a manner similar to that described above. The ethereal extract was concentrated to give a mixture ($1 \mathrm{~h}: 148 \mathrm{mg} ; 24 \mathrm{~h}: 198 \mathrm{mg}$) of compounds $(E)-5,(Z)-5$ and 2-\{1-hydroxy-2-[2-(methylsulfanyl)ethoxy]ethyl\} thiophene 9. Samples of the products were isolated on a silica gel column (hexane- $\mathrm{Et}_{2} \mathrm{O}, 90: 10$ to $50: 50$).

Compound 9: an oil (Found: C, 49.7; H, 6.3. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 49.5 ; \mathrm{H}, 6.5 \%) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3420,1115$ and 705 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.74(2 \mathrm{H}, \mathrm{t}$, $J 2.7), 3.15(1 \mathrm{H}, \mathrm{d}, J 3.1, \mathrm{OH}), 3.61(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and 8.8$)$, $3.72-3.75(3 \mathrm{H}, \mathrm{m}), 5.14(1 \mathrm{H}$, ddd, $J 3.1,6.7$ and 8.8$), 6.98(1 \mathrm{H}$, dd, $J 3.7$ and $4.8, \mathrm{ArH}), 7.02(1 \mathrm{H}, \mathrm{dd}, J 1.2$ and $3.7, \mathrm{ArH})$ and $7.26(1 \mathrm{H}, \mathrm{dd}, J 1.2$ and $4.8, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125.7 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 15.9,33.7,69.0,70.3,77.3,124.3,124.9,126.6$ and 143.5; m / z (EI) 126 ($95 \%, \mathrm{M}-\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{SMe}$), 113 (99), 85 (43) and 75 (100).

Reaction of salts 4 with CsF in DMSO

To a solution of salts cis-4 and trans-4 (37:63) in DMSO (5 cm^{3}) was added $\mathrm{CsF}(0.30 \mathrm{~g}, 2 \mathrm{mmol})$. The mixture was stirred for either $2 \mathrm{~h}, 24 \mathrm{~h}$ or 48 h and then was worked up in a manner similar to that described above. The ethereal extract was concentrated ($2 \mathrm{~h}: 190 \mathrm{mg} ; 24 \mathrm{~h}: 189 \mathrm{mg} ; 48 \mathrm{~h}: 192 \mathrm{mg}$) and chromatographed on a silica gel column (hexane- $\mathrm{Et}_{2} \mathrm{O}, 90: 10$ to $50: 50)$ to give compound $(E)-5,(Z)-5,7,9$ and $2-\{2-[2-(m e t h y l-$ sulfanyl)ethoxy]acetyl $\}$ thiophene 10 (entries 7-9).

Compound 10: an oil (Found: C, 49.9; H, 5.65. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 50.0 ; \mathrm{H}, 5.6 \%) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1675,1415$ and 1135 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.78(2 \mathrm{H}, \mathrm{t}$, $J 6.6), 3.79(2 \mathrm{H}, \mathrm{t}, J 6.6), 4.62(2 \mathrm{H}, \mathrm{s}), 7.16(1 \mathrm{H}, \mathrm{dd}, J 4.0$ and 4.8, ArH$), 7.69(1 \mathrm{H}, \mathrm{dd}, J 1.1$ and $4.8, \mathrm{ArH})$ and $7.89(1 \mathrm{H}, \mathrm{dd}$, $J 1.1$ and $4.0, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 16.0,33.5$, $70.9,74.4,128.2,132.7,134.1,140.9$ and $189.8 ; m / z$ (EI) 216 $\left(\mathrm{M}^{+}, 0.1 \%\right), 111(82), 97(27)$ and 74 (100).

Reaction of salts 4 with CsF in the presence of DBU in DMF or DMSO

To a DMF or DMSO $\left(5 \mathrm{~cm}^{3}\right)$ solution of salts cis-4 and trans-4 described above were added $\mathrm{DBU}(0.30 \mathrm{~g}, 2 \mathrm{mmol})$ and CsF $(0.30 \mathrm{~g}, 2 \mathrm{mmol})$. The mixture was worked up to give a mixture (176 mg) of compounds 7 and $\mathbf{8}$ from the reaction in DMF, or a mixture (180 mg) of products $\mathbf{7}, \mathbf{8}$, and $\mathbf{3}$ from the reaction in DMSO.

Change in isomers $(E)-5$ and $(Z)-5$ at RT

Compound $(E)-5$ or $(Z)-5(15 \mathrm{mg}, 0.08 \mathrm{mmol})$ was kept for 4 days at RT in air and then was dissolved in $\mathrm{CDCl}_{3}\left(0.6 \mathrm{~cm}^{3}\right)$ to determine its ${ }^{1} \mathrm{H}$ NMR spectrum. The spectrum from isomer $(E)-5$ showed the presence of compounds 7,8 and 10-hydroxy-6,7,9,10-tetrahydro- 4 H -thieno[3,2- $f][1,4]$ oxathionine 11 in the proportions $18: 68: 14$, and that from isomer $(Z)-5$ was a mixture of proportions $91: 3: 6$. The CDCl_{3} solution was concentrated and the residue was chromatographed on a silica gel column (hexane- $\mathrm{Et}_{2} \mathrm{O}, 1: 1$).

Compound 11: bp $110^{\circ} \mathrm{C}(1.5 \mathrm{mmHg}) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3410$, 1235 and $1065 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.07-2.11(2 \mathrm{H}, \mathrm{m}$, $\left.6-\mathrm{H}_{2}\right), 2.30(1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{OH}), 3.48(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and $10.5,9-$ H), $3.81(1 \mathrm{H}$, ddd, $J 3.2,4.1$ and $12.7,7-\mathrm{H}), 3.87-3.93(2 \mathrm{H}, \mathrm{m}$, $4-$ and $7-\mathrm{H}), 3.96(1 \mathrm{H}$, dd, $J 2.4$ and $10.5,9-\mathrm{H}), 4.14(1 \mathrm{H}, \mathrm{d}$, $J 12.4,4-\mathrm{H}), 5.01(1 \mathrm{H}$, ddd, $J 2.4,4.4$ and $8.37,10-\mathrm{H}), 7.00$ $(1 \mathrm{H}, \mathrm{d}, J 5.1, \mathrm{ArH})$ and $7.21(1 \mathrm{H}, \mathrm{d}, J 5.1, \mathrm{ArH}) ; \delta_{\mathrm{C}}(125.7$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 27.3,30.0,69.3,75.7,76.1,123.6,130.2,133.3$ and $144.0 ; m / z$ (EI) $216.0282\left(\mathrm{M}^{+} . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}\right.$ requires M, 216.0279), 216 (42%), 156 (14), 126 (100) and 97 (13).

3-(3-Thienyl)-1,4-oxathiane 13
A suspension of 3-lithiothiophene was prepared from 3-bromothiophene $(8.2 \mathrm{~g}, 50 \mathrm{mmol})$ and butyllithium (1.6 m in hexane; $\left.30 \mathrm{~cm}^{3}, 48 \mathrm{mmol}\right)$ in a mixture of hexane $\left(60 \mathrm{~cm}^{3}\right)$ and THF $\left(6 \mathrm{~cm}^{3}\right)$ according to the reported method. ${ }^{7}$ This suspension was added to a suspension of copper (I) iodide $(4.8 \mathrm{~g}, 25 \mathrm{mmol})$ in THF ($90 \mathrm{~cm}^{3}$) for 25 min at $-40^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h to give a suspension of lithium di-(3-thienyl)cuprate $\mathbf{1 2}$. A benzene solution of compound $2(26 \mathrm{mmol})$ was added to the suspension of cuprate 12 at $-40^{\circ} \mathrm{C}$, and stirred at RT for 12 h . Saturated aq. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ was added to the mixture, which was then filtered. The filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(200 \mathrm{~cm}^{3}\right)$. The extract was washed successively with water and saturated aq. NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on a silica gel column (hexane- $\mathrm{Et}_{2} \mathrm{O}, 97: 3$), and the eluent was concentrated under reduced pressure to give the title compound $\mathbf{1 3}(2.2 \mathrm{~g}, 47 \%)$ as a non-distillable oil (Found: $\mathrm{C}, 51.4 ; \mathrm{H}, 5.4 . \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{OS}_{2}$ requires $\left.\mathrm{C}, 51.6 ; \mathrm{H}, 5.4 \%\right) ; v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1450,1285$ and $1105 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.52$ $(1 \mathrm{H}$, ddd, $J 2.2,2.9$ and $13.6,5-\mathrm{H}), 2.98(1 \mathrm{H}$, ddd, $J 3.3,10.6$ and 13.6, 5-H), $3.76(1 \mathrm{H}$, ddd, $J 2.2,10.6$ and $11.7,6-\mathrm{H}), 3.79$ ($1 \mathrm{H}, \mathrm{dd}, J 9.2$ and $11.3,2-\mathrm{H}), 4.12-4.17(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 6-\mathrm{H})$, $4.19(1 \mathrm{H}, \mathrm{dd}, J 2.9$ and $11.3,2-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and 5.1 , ArH), $7.22(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.28(1 \mathrm{H}, \mathrm{dd}, J 2.9$ and 5.1, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 27.9, 39.2, 68.1, 73.8, 122.3, $125.9,127.0$ and $139.0 ; m / z$ (EI) $186.0167\left(\mathrm{M}^{+} . \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{OS}_{2}\right.$ requires $M, 186.0173), 186(75 \%), 128(100), 126(70)$ and 97 (27).

3-(3-Thienyl)-4-[(trimethylsilyl)methyl]-1,4-oxathianium triflate

 14(Trimethylsilyl)methyl triflate ($2.4 \mathrm{~g}, 10 \mathrm{mmol}$) was added to a solution of compound $13(1.5 \mathrm{~g}, 8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ at RT and the mixture was stirred for 2 h . The solvent was evaporated off under reduced pressure. The residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ and concentrated to give the title salt $\mathbf{1 4}$ (cis: trans, $14: 86$) ($3.1 \mathrm{~g}, 93 \%$), mp $84-86^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 36.7; H, 5.0. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}_{3} \mathrm{Si}$ requires $\left.\mathrm{C}, 36.95 ; \mathrm{H}, 5.0 \%\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1270, 1160 and $860 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ cis-14: 0.20 $(9 \mathrm{H}, \mathrm{s}), 1.86(1 \mathrm{H}, \mathrm{d}, J 14.0), 2.98-3.04(1 \mathrm{H}, \mathrm{m}), 4.15-4.19$ $(1 \mathrm{H}, \mathrm{m}), 4.28-4.33(1 \mathrm{H}, \mathrm{m}), 4.37-4.44(1 \mathrm{H}, \mathrm{m}), 4.53-4.58$ $(1 \mathrm{H}, \mathrm{m}), 5.26-5.29(1 \mathrm{H}, \mathrm{m}), 7.37-7.39(1 \mathrm{H}, \mathrm{m})$ and 7.83-7.85 ($1 \mathrm{H}, \mathrm{m}$) (other signals overlapped with those of trans-14); trans-14: $0.18\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 2.30\left(1 \mathrm{H}, \mathrm{d}, J 14.0, \mathrm{CH}_{2}\right), 3.14$ $\left(1 \mathrm{H}, \mathrm{d}, J 14.0, \mathrm{CH}_{2}\right), 3.61(1 \mathrm{H}, \mathrm{d}, J 12.2,5-\mathrm{H}), 3.78(1 \mathrm{H}$, ddd, $J 3.1,12.2$ and $15.3,5-\mathrm{H}), 4.06-4.13(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 6-\mathrm{H}), 4.34$ $(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and $13.4,2-\mathrm{H}), 4.49(1 \mathrm{H}$, ddd, $J 3.1,3.1$ and $14.0,6-\mathrm{H}), 5.14(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and $10.4,3-\mathrm{H}), 7.20(1 \mathrm{H}$, dd, $J 1.2$ and $4.6, \mathrm{ArH}), 7.48(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and $4.6, \mathrm{ArH})$ and 7.76 (1 H , dd, $J 1.2$ and $3.1, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125.7 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ trans-14: -1.6 (3 C), 24.4, 39.0, 53.7, 64.1, 69.7, 126.1, 128.4, 128.7 and 129.0.

Reaction of salt 14 with CsF

To a solution of salt $14(422 \mathrm{mg}, 1 \mathrm{mmol})$ in DMSO $\left(5 \mathrm{~cm}^{3}\right)$ was added CsF ($0.30 \mathrm{~g}, 2 \mathrm{mmol}$) at RT. The mixture was stirred for 24 h , poured into water $\left(50 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue (170 mg) from the extract was chromatographed on a silica gel column $\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ hexane, $30: 70$) to give 4-hydroxy-4,7,8,10-tetrahydro-5H-thieno-[2,3-f][1,4]oxathionine $\mathbf{1 8}(80 \mathrm{mg}, 37 \%)$, mp $77-79^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 50.0 ; \mathrm{H}, 5.6 . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires C, $50.0 ; \mathrm{H}, 5.6 \%$); $v_{\max }($ film $) /$ $\mathrm{cm}^{-1} 3395,1235,1115$ and $1065 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 2.12-2.18 ($2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.46(1 \mathrm{H}$, br s, OH$), 3.55(1 \mathrm{H}$, dd, $J 7.6$ and $10.6,5-\mathrm{H}), 3.75-3.86\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\right.$, and $\left.7-\mathrm{H}_{2}\right), 4.26$ $\left(2 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}_{2}\right), 4.83(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7.6,4-\mathrm{H}), 6.95(1 \mathrm{H}, \mathrm{d}, J 5.3$, $\mathrm{ArH})$ and $7.24(1 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(67.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 27.6$, $29.5,69.6,75.3,75.8,124.7,125.5,136.4$ and $142.9 ; \mathrm{m} / \mathrm{z}$ (EI) $216.0275\left(\mathrm{M}^{+} . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}\right.$ requires $\left.M, 216.0279\right)$, 216 (57%), 156 (17), 126 (100) and 97 (24).

Reaction of salt 14 with CsF in the presence of DBU

(A) To a solution of salt $\mathbf{1 4}$ in DMSO were added DBU $(0.30 \mathrm{~g}$, $2 \mathrm{mmol})$ and $\mathrm{CsF}(0.30 \mathrm{~g}, 2 \mathrm{mmol})$ in a manner similar to that described above. The mixture was stirred for 24 h at RT and worked up. The residue (185 mg) from the ethereal extract was chromatographed on a silica gel column (hexane- $\mathrm{Et}_{2} \mathrm{O}, 70: 30$ to $50: 50)$ to give alcohol $18(40 \mathrm{mg}, 19 \%)$ and $2-[(2-h y d r o x y-$ ethyl)sulfanylmethyl]-3-vinylthiophene 19 ($15 \mathrm{mg}, 8 \%$) as an oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3400,1625$ and $1050 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 2.02(1 \mathrm{H}, \mathrm{t}, J 5.9, \mathrm{OH}), 2.72\left(2 \mathrm{H}, \mathrm{t}, J 5.9, \mathrm{SCH}_{2}\right), 3.70$ $\left.\left(2 \mathrm{H}, \mathrm{q}, J 5.9, \mathrm{OCH}_{2}\right), 3.96(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH})_{2}\right), 5.28(1 \mathrm{H}, \mathrm{dd}, J 1.0$ and 11.2, $\left.\mathrm{CH}-\mathrm{CH}_{2}\right)$, $5.58\left(1 \mathrm{H}\right.$, dd, $J 1.0$ and $\left.17.5, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $6.74\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.17.5, \mathrm{C} H=\mathrm{CH}_{2}\right)$ and $7.05-7.20(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125.4 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 27.8,34.8,60.5,114.8,123.9$, 125.3, 128.6, 136.9 and $137.1 ; \mathrm{m} / z$ (EI) $200.0328\left(\mathrm{M}^{+} . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{OS}_{2}\right.$ requires $M, 200.0329$), $200(91 \%), 123$ (100) and 79 (66).
(B) CsF $(0.30 \mathrm{~g}, 2 \mathrm{mmol})$ was added to a solution of salt 14 in DMSO and 5 min after DBU ($0.30 \mathrm{~g}, 2 \mathrm{mmol}$) was added. The reaction mixture was treated as described above. The residue $(184 \mathrm{mg})$ from the ethereal extract was chromatographed on a silica gel column (hexane- $\mathrm{Et}_{2} \mathrm{O}, 70: 30$ to $50: 50$) to give 4,7,8,10-tetrahydro-5H-thieno[2,3-f][1,4]oxathionine 17 (92 mg , 46%), bp $115^{\circ} \mathrm{C}(0.6 \mathrm{mmHg})$ (Found: C, $53.9 ; \mathrm{H}, 6.1 . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{OS}_{2}$ requires $\mathrm{C}, 54.0 ; \mathrm{H}, 6.0 \%)$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1435,1110$ and 1045 ; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.13\left(2 \mathrm{H}, \mathrm{d}, J 5.0,8-\mathrm{H}_{2}\right), 2.73$ $\left(2 \mathrm{H}, \mathrm{t}, J 4.6,4-\mathrm{H}_{2}\right), 3.61\left(2 \mathrm{H}, \mathrm{t}, J 4.6\right.$ and $\left.10.6,5-\mathrm{H}_{2}\right), 3.80$ $\left(2 \mathrm{H}, \mathrm{d}, J 5.0,7-\mathrm{H}_{2}\right), 4.24\left(2 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}_{2}\right), 6.70(1 \mathrm{H}, \mathrm{d}, J 5.3$, $\mathrm{ArH})$ and $7.20(1 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(67.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 27.0$, 29.7, 31.0, 71.8, 75.0, 124.1, 128.9, 136.0 and 140.1; m/z 200 $\left(\mathrm{M}^{+}, 100 \%\right), 123(50), 110(72)$ and $89(30)$.

References

1 J. B. Bremner and N. Theirasasana, Aust. J. Chem., 1982, 35, 2307; C. A. Demerson and L. Humber, Can. J. Chem., 1979, 57, 3296; T. Erker, Heterocycles, 1994, 38, 1627.

2 M. Hesse, Ring Enlargement in Organic Chemistry, VCH, Weinheim, 1991, p. 83.
3 (a) N. Shirai, F. Sumiya, Y. Sato and M. Hori, J. Org. Chem., 1989, 54, 836; (b) F. Sumiya, N. Shirai and Y. Sato, Chem. Pharm. Bull., 1991, 39, 36; T. Kitano, N. Shirai and Y. Sato, (c), Synthesis, 1991 , 996; (d) Chem. Pharm. Bull., 1992, 40, 768; (e) T. Kitano, N. Shirai, M. Motoi and Y. Sato, J. Chem. Soc., Perkin Trans. 1, 1992, 2851; (f) Y. Sato, N. Shirai, Y. Machida, E. Ito, T. Yasui, Y. Kurono and K. Hatano, J. Org. Chem., 1992, 57, 6711; (g) A. Sakuragi, N. Shirai, Y. Sato, Y. Kurono and K. Hatano, J. Org. Chem., 1994, 59, 148; (h) N. Kawanishi, N. Shirai, Y. Sato, K. Hatano and Y. Kurono, J. Org. Chem., 1995, 60, 4272; (i) K. Narita, N. Shirai and Y. Sato, J. Org. Chem., 1997, 62, 2544; (j) N. Kawanishi, K. Fujiwara, N. Shirai, Y. Sato, K. Hatano and Y. Kurono, J. Chem. Soc., Perkin Trans. 1, 1997, 3013.
4 (a) T. Tanzawa, N. Shirai, Y. Sato, K. Hatano and Y. Kurono, J. Chem. Soc., Perkin Trans. 1, 1995, 2845; (b) T. Kitano, N. Shirai and Y. Sato, J. Chem. Soc., Perkin Trans. 1, 1997, 715.
5 T. Tanaka, N. Shirai, J. Sugimori and Y. Sato, J. Org. Chem., 1992, 57, 5034.

6 D. L. Tuleen and R. H. Bennett, J. Heterocycl. Chem., 1969, 6, 115.
7 R. D. Rieke, Tetrahedron Lett., 1994, 35, 3673.

Paper 7/07379H
Received 13th October 1997
Accepted 12th January 1998

